
‭Defining Surrogates for Industrial Use -‬
‭The JuliaSim Surrogate Approach‬
‭Many people approach building surrogate models for industrial simulation as a problem‬

‭of machine learning architectures. The surrogates problem is to generate a‬

‭machine-learned model that approximates a physical model to a high degree of accuracy‬

‭but runs orders of magnitudes faster than the original model. In this approach, the focus‬

‭tends to be on the construction of new neural networks, like physics-informed neural‬

‭networks (PINNs)‬‭1‬‭, DeepONets‬‭2‬‭, Continuous-Time Echo State Networks (CTESNs)‬‭3‬‭,‬

‭Fourier Neural Networks (FNO)‬‭4‬‭, and more, which, when given sufficient data from a‬

‭simulation, can reproduce their behavior. This does not address the underlying problem‬

‭of integrating next-generation machine learning into industrial modeling and simulation‬

‭workflows or the real problem of integrating surrogates into industrial processes and‬

‭requirements infrastructure.‬

‭How do Surrogates Fit into Industrial Processes and Requirements‬

‭Infrastructure?‬

‭These are the processes that are in place to make sure that an airplane that is designed‬

‭by a controls engineer will stay in the air, ensure that drugs that enter the market are‬
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‭safe, and make sure that the products being developed take into account the realities of‬

‭supply chains to be built in robust but reproducible ways. As scientific and engineering‬

‭industries have entered the digital age, these processes have been refined so that‬

‭mathematical and computational contributions can enhance the full pipeline, from‬

‭research and deployment all the way to the late stages of fleet management.‬

‭For the next generation of machine learning technologies to succeed in advanced‬

‭engineering industries, they must be adapted to these processes and operate within the‬

‭required infrastructure. At a high level, what are the requirements that are imposed‬

‭through these systems?‬
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‭Deployable Surrogate Systems Must Have Predictable Accuracy‬

‭Giving a neural network more data to learn from‬‭should‬‭improve its ability to make‬

‭better predictions. However, this can be highly dependent on whether the right‬

‭hyperparameters are chosen. As the optimization process falls into a different local‬

‭minima, it may not have improved even with the enlarged dataset. Maybe a larger neural‬

‭network is necessary but it's not always clear when increasing the size of the neural‬

‭network will actually improve predictions.‬

‭Industrial use of machine learning needs to ensure that projects do not introduce a new‬

‭vector that may seemingly randomly regress. Simulations of fluid flow through an‬

‭airplane engine will be checked by engineers to reach a required prediction precision. If‬

‭the system needs to be more accurate due to downstream requirements changes, the‬

‭engineers know how to reliably increase this precision at the cost of compute power. The‬

‭processes and requirements of simulation thus act first and foremost as a pull on‬

‭precision.  "We need this accurate to 1% on the landing forces", and with that, modeling‬

‭and simulation are performed to give computational tools that reach the precision‬

‭required by downstream teams for a successful handoff.‬

‭It's not a given that the best neural network architecture in test scenarios is also‬

‭guaranteed to be reliably able to meet accuracy requirements. While machine learning is‬

‭adequate for generative AI since the model does not need to change until the language‬

‭changes (a slow process),  surrogate models need to be retrained every time the‬

‭specifications or questions change. Engineers need a machine learning process that‬

‭guarantees desired accuracy and gives a speedup while hitting all requirements. Thus,‬

‭what's important is not the neural architecture but a process that can reliably generate‬

‭accurate neural approximations.‬
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‭A machine learning process that can guarantee always having a model of desired‬

‭accuracy and provide a speed up while hitting all of the requirements is what helps‬

‭engineers. Thus, what's important in the industrial context is not the neural architecture‬

‭but having a process that can reliably generate accurate neural approximations.‬

‭Deployable Surrogate Systems Require Clear Verification and Validation‬
‭Standards‬

‭The right understanding of the surrogates problem asks: "What are the processes so‬

‭that, if we need 1% accuracy of a safety critical prediction over the whole space, we can‬

‭derisk our analyses as much as possible?". This question is tractable. It's a question that‬

‭leads to concrete questions like:‬

‭●‬ ‭What kinds of plots and visualizations would best help us understand where the‬
‭surrogate is most accurate and inaccurate?‬

‭●‬ ‭If the accuracy of a specific area of the parameter space needs to be improved,‬
‭how can a retrain be enforced so as to improve accuracy without sacrificing its‬
‭accuracy elsewhere?‬

‭●‬ ‭How can the algorithm indicate what additional data is required or what hyper‬
‭parameters should be adjusted?‬

‭●‬ ‭What are the right metrics and numbers that should be tracked so that, if‬
‭sufficiently large, should be treated as a warning that the surrogates may not be a‬
‭reliable resource for a given parameter range or scenario?‬

‭●‬ ‭How can this whole process be simplified so that new employees with domain‬
‭expertise and no machine learning experience can easily "do it right" with the‬
‭right safeguards to ensure inaccurate models are not accidentally deployed?‬

‭These are the real questions that need to be addressed in order for an engineering team‬

‭to safely develop internal processes and deploy neural surrogates throughout their firm.‬
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‭Any Deployable Surrogate System Must Focus on Reliable Prediction Time‬

‭A common question about surrogates is whether the time saved compensates for the‬

‭time spent training them. In other words, did the use of the surrogate decrease the‬

‭overall compute over not using the surrogate? If you had to run the expensive simulation‬

‭model 1,000 times in order to build an accurate surrogate model which was used in a‬

‭downstream analysis, say in a parameter estimation loop that requires solving the model‬

‭5,000 times, did the surrogate architecture "pay for itself" or would it have been faster to‬

‭simply run the original analysis on the slow model?‬

‭Looking at industry applications of surrogates reveals that this question is a red herring‬

‭as to the utility of a surrogate in applications for a number of reasons.‬

‭Many applications of surrogates are enabling analysis that would be impossible without‬

‭the surrogate's inference speed improvements. For example, in the control of power‬

‭grids, there is a strict requirement that a model's evaluation be able to be run at X Hz in‬

‭order to be deployed in the control scenario. This compute cost bound is thus the‬

‭fundamental limiting factor of whether a model can be used in this context, and for this‬

‭reason, often crude approximate models are used, which can lead to inefficient control‬

‭strategies. Many billions of dollars can be gained by having a more accurate model.‬

‭Accurate (partial differential equation) models exist which are much higher fidelity but‬

‭are too slow to be run in this real-time scenario.‬

‭The critical factor here is not the time it takes to train the surrogate (whether a week or‬

‭six months), but whether it can reliably provide the required accuracy within the‬

‭specified time frame. This focus on meeting requirements takes precedence over‬

‭architectural considerations aimed at saving training time.‬
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‭The data generation process is not necessarily a serial process. In fact, in many cases, the‬

‭data generation is simply independent runs of a simulator at new parameters, a process‬

‭that is embarrassingly parallel. This means that in theory, the time it takes to run the‬

‭model with 5,000 different parameters is simply the true time cost of running the model‬

‭once with its most expensive configuration of the set.‬

‭With the advent of cloud, parallelism has no additional cost. As a result, the impact of‬

‭data quantity on building surrogates is minimal. Instead, it becomes a question of value:‬

‭is the value of the surrogate greater than the cost of its training? This question of value is‬

‭again a question of how it's integrated into processes: how many engineers is this‬

‭improving the workflows and productivity of? Given that we are talking about highly‬

‭skilled engineers in high-tech industries, the effect of productivity increases can be a‬

‭force multiplier when spread over a whole team or department. What matters most is‬

‭that the engineers can rely on the surrogate to always work as expected and, as such,‬

‭not give them the extra work of triple-checking its accuracy every time it's used.‬

‭Surrogates could be a productivity boost as large as the original push to digitization if‬

‭done correctly, or they can be a sideshow that puts entire teams on a wild goose chase if‬

‭not.‬

‭The true value cannot be unlocked without addressing the core aspect of having‬

‭surrogate training processes and requirements that focus on how to use the surrogate‬

‭techniques of the day in order to unlock as much productivity out of engineers as‬

‭possible.‬
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‭Digital Echo: A Neural Surrogate Built Around Industrial Processes‬

‭Digital Echo - Generating Surrogates for Tuning Controllers using an ODEProblem Source‬

‭The JuliaSim approach addresses the surrogate question from the standpoint of‬

‭processes and requirements. The core questions above drive the development of our‬

‭JuliaSim surrogate trainer product.‬

‭Questions like:‬

‭●‬ ‭What are the neural architectures that will most reliably improve if trained on‬

‭more data and are not hampered by issues associated with having too many‬

‭hyperparameters to tune?‬

‭●‬ ‭How do we develop a visualization suite around the surrogate training processes‬

‭so that scientists can be in the loop, easily understand the accuracy profile of the‬

‭surrogate, and understand where or if the training must be improved?‬
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‭●‬ ‭Through what means can we present an architecture that is reliable and‬

‭automatically masks training costs to maximize productivity via effective use of‬

‭cloud infrastructure?‬

‭●‬ ‭How do we take all of this and make it usable and accessible to domain scientists‬

‭and engineers with no machine learning background?‬

‭These questions have driven us to develop our new architecture, Digital Echo. Its focus is‬

‭not on the mathematical structures or the layer definitions; here we give absolutely no‬

‭definition of the mathematics inside how it computes NN(x). It's not about the‬

‭architecture; Digital Echo is about a process. A process for reliably creating the best‬

‭surrogate it can, with processes to know when it needs to retrain, when it needs to warn‬

‭you about accuracy, and processes for how to generate legible reports to document‬

‭surrogate accuracy. Digital Echo is a completely different take on surrogates because it's‬

‭about making sure someone can click a button and get a surrogate that meets the‬

‭industrial requirements set out in their specifications sheet. Digital Echo is not about‬

‭performance but productivity.‬
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